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a b s t r a c t

The segmentation of the region of interest (ROI) of digital images is generally the first step
in the pattern recognition (PR) procedure. Automatic segmentation of biomedical images
is desirable and comparisons among new approaches, by using available databases, are
important. We present a new approach to compute the Hausdorff distance (HD) between
digital images. Although HD is the most used distance estimator among sets, we show
why it is not suitable for biomedical applications. In this paper, a new technique to define
the degree of correction of the ROI is developed to serve as a basis for the comparisons
used to validate works on segmentation of biomedical images. As for online diagnosis,
the comparison among possible techniques must be efficient enough to: (1) be done in
real time (i.e. during the examination), (2) allow the inclusion of priority aspects, and
(3) be intuitive and simple enough to be easily followed by people with no computational
or mathematical background. We develop a new index by considering the expectations
of the medical doctors who are using computer systems for diagnostic aids, and take
into consideration how these systems use ROIs to extract feature properties from the
examinations. We discuss conditions for empirically defining a measure for calculating
similarities and differences between ROIs. The proposed method is applied to both real
and simulated data examples.

© 2015 Elsevier B.V. All rights reserved.

1. Introducing the problem1

Dedicated digital image processing chips convert raw data acquired from digital cameras into a discrete set of points. Q22

The quality of the digital images is related to the numbers of discrete points used (named pixels in computer graphics and3

in image processing) and to the resolution used by the digital camera. Image processing is typically a special application of4

methods from discrete mathematics [9]; it considers several tools to manipulate the images in many ways. In this work we5

are interested in a particular type of digital camera that can acquire the infrared (IR) frequency of each discrete point in a6

scene (Fig. 1(a)). Even moreparticularly, we are interested in the relationship with this IR frequency and the temperature of Q37

the human body, when such an element is included in the frame (Fig. 1(b)). We consider that, for each discrete point that is8

captured, we have its coordinates as well as its temperature, which is a real number representing a color and able to take a9

finite number of different values (Fig. 1(a) and (c)). These temperatures of the human body can be used for diagnosis, where10
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Fig. 1. IR camera and the captured scene, where the temperature of each discrete point is represented by colors (a), each discrete point of the image (b),
representation of the temperature using gray level and the first step of segmentation process (c), that is, the inframammary folds of the right and left breast
of the patient defined by blue and red lines respectively. Two possible ways to define the ROI are by its boundaries (d) and, by labeling the pixels belonging
to ROI (e). (For interpretation of the references to

∧
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Steps of IR based CADs for breast diseases.

the temperatures are restricted to a special region of the body. Proper definition of such a region is very important for the 1

following steps of the application. When algorithms define these boundaries, the distances among the correct borders, and 2

those achieved by a given implementation, need to be characterized. The Hausdorff distance (HD) is a metric for evaluating 3

the distance between discrete sets of points [2]. This paper presents a newalgorithm forHD computation for discrete images, 4

based on the geometry of parallel bodies [5], and the characterization of the distance among sets of points [11]. 5

Pattern Recognition (PR) and image processing techniques have been applied in analysis of the most common types of 6

medical diagnosis [16]. In these techniques, the first step after acquiring the image (Fig. 2) is to separate the important 7

elements, that is, to obtain the region of interest (ROI) [19]. Two common representations of the ROI are by its boundary or 8

by its area. A contrasting line can be used in the graphical representation of ROI in the first case (Fig. 1(d)). In the second 9

case, the ROI can be identified by labeling its pixels as ‘‘1’’ or white (Fig. 1(e)). In the IR frontal breast examination, right and 10

left orientation always refers to the patient. Thus, in Fig. 1(c), a blue line defines the lower boundary (inframammary fold) 11

of right side of the patient, and a red line defines the lower boundary of the left breast. 12

Typically, there are two ways to design image segmentation algorithms, with user interactions or automatically. In the 13

first case, there is some degree of dialogwith the user, for instance, in the identification of the important objects in the image. 14

In the second case, the segmentation is realized without any human intervention. In most of the cases of computer aided 15

diagnosis (CAD), a complete automatic procedure of ROI segmentation must be carried out [7]. That is, this region must be 16

found with no user interaction. However, due to the complexity and importance of proper ROI definition for the next steps 17

of these CAD systems (that are represented in Fig. 2), the exactitude of ROI identification algorithms must be proved. To 18

evaluate the ROI correctness, a large number of cases, which are segmented by a group of experts, needs to be considered. 19

However, it is not easy to find and persuade good specialists to spend their time doing this type of work. In addition, more 20

than one result for each case and image is needed in order to achieve segmentations free of personal bias. These aspects 21

make the set of segmentations considered to be correct of great value in the research. They constitute the commonly named 22

‘‘truest sets’’ for comparisons of results, or what is called the ‘‘ground truth’’ (GT) [4,6]. 23

After a number of automatic segmentations have passed through the comparison stage with the GT (composed by a 24

combination of correct segmentations), they are included in CAD systems. Moreover, these systems, in most cases, perform 25

segmentation algorithms in real time, that is, during the patient examination period. In this way, in case of doubt, there 26

is the possibility of repeating the examination process. In order to verify the adequacy of different approaches, numerical 27

(rather than visual) techniques must be used to compare the ROIs. Keeping in mind all these aspects, it is clear why it is 28

of great importance to have a metric to show how similar two ROI boundaries are. The definition of a fast, intuitive and 29

correct evaluator for medical ROI comparisons is still an open problem. The presentation of a new index to compare ROIs 30

for diagnostic systems is the goal of this work. It also presents a brief review of similarity measures currently used for ROI 31

comparison. Moreover, it develops a new candidate for a measure with which to compare nonconvex, nondisjoint, but fully 32

connected regions, that constitute the ROI of IR breast images, and discusses its advantages. 33

This work is based on an application under development in the Radiologic Service of the University Hospital of the 34

Fluminense Federal University (UFF), Niteroi, Rio de Janeiro, Brazil: The project PROENG (http://visual.ic.uff.br/en/proeng/). 35

The aim of this project is to research the possibilities of IR breast examinations to help breast disease detection, and to 36

develop amethodology formachine learning and decision support system for the early detection of breast cancer and follow- 37

up by adjuvant therapy. 38

The rest of the paper is organized as follows. The next section gives the reader some background about the importance of 39

ROI validation. In Section 3, we consider details of our new index and other measure to compare segmentation approaches. 40

http://visual.ic.uff.br/en/proeng/
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Here the new algorithm for HD is presented. Results and comparison are discussed in Section 4. Section 5 concludes the1

paper.2

2. Validation of the segmentation results3

Image segmentation is the procedure of extracting particular structures of interest (e.g., breast tissue) from an image4

(e.g., mammogram). Before an algorithm for segmentation can be used clinically (or commercially), it is imperative to know5

how well the algorithm performs on a wide range of real images, comprising possibly hundreds of test cases. If a GT set is6

available for each of these test cases (e.g., manual segmentations from clinicians) then it is possible to use these segmen-7

tations as a basis to evaluate the segmentation performance of the algorithm. However, for any clinical task, it is possible8

to have a range of good segmentations (e.g., two clinicians can provide slightly different segmentations), at the same time,9

it is possible that even seemingly small deviations from the GT can have great clinical importance. Consequently, a visual10

inspection is often necessary to assess whether differences between segmentations are medically significant.11

In the development of CADs, a lot of time and effort are spent in order to evaluate image segmentation algorithms. If an12

algorithmdoes not provide accurate enough results from amedical diagnostic point of view, this is considered unacceptable,13

and the computer science expert needs tomodify it and re-run thewhole test suite until it achieves good results. This process14

is repeated until the image segmentation algorithm evolves to its final acceptable version, where it passes properly into the15

test suite. However, this evaluation process is mostly done visually. It is very time consuming, requiring the presence of16

reliable experts from the medical area being studied.17

The main reason for this is that segmentation methodologies are very dependent on the underling application. There is Q418

no standard for all cases, and it must be evaluated for each new application. The evaluation is more efficient when a GT19

is used for comparison with the result of the algorithm in analysis. The degree of error must be evaluated by using some20

measure to compare the results obtained by diverse techniqueswith an expert validation. Once a validmeasure is found, the21

results produced by any new version of the image segmentation algorithm can be tested in a simpler way, deemed correct22

or incorrect depending on whether or not it is consistent with the segmentations previously deemed correct (the GT). In23

this way, because there is not human intervention to validate the results, substantial saving can be obtained during testing.24

Image quality measures play important roles in a broad range of applications of image processing and analysis. Image25

acquisition, compression, communication, restoration, enhancement, display, printing, watermarking and PR are some26

examples. The most widely used reference of the similarity between an image A and an image B are based on their27

correlations, or in the assessment of peak signal-to-noise ratio (PSNR) of the difference between the images (i.e.
∧
|A − −B|),28

or in its mean squared error (MSE). Although, PSNRmatches the human perception better than the other [24,25], all of them29

are more representative of image quality, and inadequate for evaluation of image segmentation results.30

There is no specific way of knowing which measures allow proper comparison of two segmentations in all applications.31

Medical imaging is related towhat is clinically relevant for a particular segmentation task. The ROI segmentation in IR images32

is intended to separate the regions of the breast from the rest of the image. The breast is made up of connective tissue, fat,33

and tissue that contain the glands that produce milk. It also contains blood and lymph vessels. The lymph vessels carry34

fluid (the lymph) that helps in case of infections and other diseases. Lymph nodes are small bean-shaped structures that35

are found throughout the body. They filter substances in lymph. Clusters of lymph nodes are found near the breast in the36

axillary region (that is under the arm), above the collarbone, and in the chest. About 75% of lymph from the breasts drains37

into the lymph nodes, making them important in the diagnosis of breast cancer. For this, the ROImust include these regions.38

That is, the extraction (from the acquired images) of the ROI must include all breast tissue, and, as much as possible, all the39

related ganglion groups [14,3].40

Fig. 3 considers ROI (dark
∧
gray)and GT (light

∧
gray)area overlapped for comparison. For this evaluation, we denote by:41

True Positive (TP) the white pixels belonging to the ROI of the GT classified correctly as in the ROI by the segmentation42

procedure; True Negative (TN) those black pixels outside of the ROI area of the GT that are classified correctly as in this43

condition. The label False Positive (FP) is assigned to pixels not in ROI of the GT but classified as in the ROI for the approach,44

that is, classified incorrectly as positive (in the ROI region). The False Negative (FN) denotes the pixels that pertain to the45

ROI of the GT incorrectly classified as out of the ROI.46

Accuracy (ACC), sensitivity (SEN), specificity (ESP), positive predictive (PDP) and negative predictive (PDN) were47

estimated using the TP , TN , FP and FN values [15]. They are measured by (1)–(5):48

ACC = (TP + TN)/(FN + FP + TN + TP) (1)49

SEN = TP/(TP + FN) (2)50

ESP = TN/(TN + FP) (3)51

PDP = TP/(TP + FP) (4)52

PDN = TN/(TN + FN). (5)53

Usually all of (1)–(5) are used to compare segmentation results. This great number of values makes the comparisons54

rather complex. To simplify, combinations of these have been proposed, as the Efficiency (EFI) and Youden index55
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Fig. 3. Overlapping automatic segmentation (dark
∧
gray)and GT (light

∧
gray).

Fig. 4. Parallel body for a square (a) and a non convex set (b). The construction of the smallest δ-parallel body of A contains B (c) and vice–versa (d). A and
B represented in a coordinate system for computation of HD(A,B) by the max {δA, δB} (e).

(Y -index) [23]: 1

EFI = 1/2(SEN + ESP) 2

Y -index = (SEN + ESP − 1). 3

From Fig. 1 (d) and Fig. 3, it seems that the distance between each curve of the border can be a possible measure of ROIs 4

closeness. However, as they are discrete sets the comparison must be made between sets of points defining each boundary 5

(i.e. the border of the areas in Fig. 3). The following section considers this approach. 6

3. Hausdorff distance and new approaches for ROI comparison 7

Let D be a closed subset of Rn, and let S denote the class of all nonempty compact subsets of D. Capital letters (e.g. A and 8

B) are used to denote sets and the lower case letters (e.g. x and y) represent points. We use the notation |x| to describe the 9

norm of a point on R or on R2, where x = (x1, x2). Set operations are calculated related to the domain D. For a set A, Ac and 10

∂A denotes its complement and its boundary. The difference between sets A and B is A\B = {x ∈ D : x ∈ A and x ∉ B}, so 11

Ac
= D\A. 12

The HD (or the Hausdorff metric) measures how far two sets, in a metric space, are from each other [1]. The alternative 13

way of defining the HD using the geometry of a proper δ-parallel body of A ∈ S is very intuitive, and is the definition used 14

here. The parallel body of A ∈ S, Aδ , is given by [5, p. 4]: 15

Aδ = {x ∈ D : |x − a| ≤ δ for some a ∈ A}. (6) 16

Fig. 4 shows the construction of the parallel body for a convex (Fig. 4(a)) andnon convex set (Fig. 4(b)),when the
∧
Euclidean 17

metric is used in R2. The geometry of Aδ is related with the shape of A and with the local neighborhoods of the metric space 18

under consideration [17, p. 86]. 19

The HD between two sets A, B is the least δ such that the δ-parallel body of A, Aδ , contains B and the δ-parallel body of B, 20

Bδ , contains A [5, p. 114]. That is HD between A and B is: 21

HD(A, B) = inf {δ : A ⊂ Bδ and B ⊂ Aδ}. (7) 22

The smallest δ-parallel body of A containing B and the smallest δ-parallel body of B containing A, are represented in 23

Fig. 4(c) and (d). Fig. 4(e) illustrates how expression (7) can be used for the computation of the HD between A and B. 24

It is readily verified that HD(A,B) is a metric for S [5, p. 114]. It is possible to see that A ⊂ Bδ when the A\Bδ is the empty 25

set. Thus 26

HD(A, B) = inf {δ : A\Bδ = Ø and B\Aδ = Ø}. (8) 27
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Fig. 5. Some structuring element E with
∧
center marked in black (a–d) and dilation of the same set by each E (e–h).

Considering the definition of the closure of A and B, denoted by A— and B— [10, p. 114] we have:1

HD(A—, B—) = inf {δ : A—
⊂ B—

δ and B—
⊂ A—

δ } = inf {δ : A ⊂ Bδ and B ⊂ Aδ} = HD(A, B). (9)2

Moreover, by definition of the boundary of A and B: ∂A and ∂B [10, p. 181] we have:3

HD(∂A, ∂B) = HD(A—, B—) = HD(A, B). (10)4

A discrete subset of a metric space is a set containing isolated points only; every finite set is therefore discrete. In5

expression (9), it is plausible to replace the set A with a discrete subset A∆ representing A. Let ∂A∆ be A∆ ∩ ∂A. Notice that6

∂A∆ does not correspond to the boundary of A∆. Similarly, we can discretize the set B and use a discrete subset B∆ for its7

representation. Approximations of the δ-parallel body of A and B can be obtained by considering their discrete representation8

A∆ and B∆. Let A1δ be the δ-parallel body constructed from A∆; let B1δ be the δ-parallel body constructed from B∆. Finally,9

we can approximate the HD distance with:10

HD(A∆, B∆) = inf {δ : A∆\B1δ = Ø and B∆\A1δ = Ø}. (11)11

Expression (11) derives from Eq. (7). As far as we know, (11) has not be used before to compute HD. In next section, we12

show how the δ-parallel body can be efficiently computed for digital image.13

3.1. Generation of the δ-parallel body by mathematical morphology14

By replacing Eq. (7) with Eq. (11), we can simplify the traditional algorithm for calculating the HD between two digital15

images. Moreover, in this section we present some considerations using (11) that can render its computation on discrete16

images even more intuitive and simple.17

Let D∆ be a discrete domain (portion of R2 where our images are represented). Let A∆ and B∆ be two digital sets (see18

Fig. 4(e)). These sets can be represented as binary images, where each pixel presents only two possible states 1 (turn on)19

representing its pixels and 0 (turn off) representing the background. Mathematical Morphology (MM) is a branch of Digital20

Image Processing, which uses concepts of set theory as intersection, union, complement, difference, inclusion and reflection21

on the construction of its main operations: dilation, erosion [21]. In binary MM, an image is viewed as a subset of D∆ [18].22

The basic idea in binary MM is to operate on an image with a simple, pre-defined shape called structuring element (denoted23

by E), that is itself a binary image with origin at a defined point; say (x1o, x2o). Fig. 5(a) shows some structuring elements.24

When an E presents a center of symmetry it is usual to consider this position as its origin. Two widely used structuring25

elements are squares and disk of radius δ and center in (x1o, x2o).26

Definition. Suppose that A∆ is a subset of D∆, corresponding to a binary image, and that E is a symmetrical structuring27

element. Let Ex denote the translation of E so that its origin is at x in D∆. Then the dilation of A∆ by E is simply the union of28

all points y of Ex when x is any point in A∆ [21].29

In order to compute the dilation of a binary image by a structuring element, we consider the background pixels in the30

border of the image. For each background pixel xwe superpose E so that the origin of the structuring element (its
∧
center in31

the case of circular structuring element) coincides with x. If at least one pixel in E coincides with a pixel of the image, then x32

is set to the foreground value. If there is no coincidence, x is left at the background value [18].33



6 A. Conci et al. / Discrete Applied Mathematics xx (xxxx) xxx–xxx

The final shape of the dilation is related to E, it defines the local neighborhood of A∆ that must be included in its dilation. 1

Then for square E, local neighborhoods of A∆ look like squares (Fig. 5(c) and (g)), and for disks, they look like circles (Fig. 5(d) 2

and (h)). Therefore, the morphological operation of dilation of A∆ for a disk of radius δ presents the same local neighborhoods 3

of the Euclidean norm d2, in R2. 4

Proposition. Consider a discrete subset A∆ of (R2, d2), where d2 = ((x1 −y1)2 +(x2 −y2)2)1/2. The dilation of A∆ for a circular 5

structuring element of radius δ coincides with the δ-parallel body of A∆. 6

Proof. This is immediate from (6) and the definition of dilation of a subset of D∆. 7

This proposition induces the new algorithm used to compare the distance between digital images. 8

3.2. Computing HD by using the geometry of the parallel body 9

By considering the results in Section 3.1, the problem of finding the HD between subsets of D∆ can be replaced by the 10

one of finding the radius δ of the structuring element to promote the proper dilation of the sets. According to the expression 11

(7), δA is the smallest radius δ of structuring element E that makes the dilation of A∆ by E covers B∆, and δB is the smallest 12

radius δ of E that makes the dilation of B∆ by E covers A∆. Then, the HD between the sets is the greatest between δA and 13

δB. A simple algorithm to calculate δ is described in the following, where D∆ is the discrete portion of R2, where points are 14

represented by 0’s and 1’s: 15

1 - Set HD=0, δA = 0, δ = 0, t = 0. 16

2 - Consider A∆ and B∆ represented by pixels of values 1. 17

3 - Compute δA by: 18

3.1 - Compute the dilation of A∆ for a disk with increasing radius r . 19

3.2 - Turn the dilated region to 0 (that is turnoff its pixels). 20

3.3 - Repeat 3.1 and 3.2 until there is nopixel with value 1 (turn on). 21

4 - Set δA = r and t = t + 1. 22

5 - If δA > δ then δ = δA. 23

6 - HD = max{HD, δ}. 24

7 - Repeat from step 3 by inverting the roles of sets A∆ and B∆. 25

8 - End. 26

This algorithm can be used for computation of the HD of discrete images. In comparison with other algorithms in the 27

literature, this is a simpler algorithm andmore intuitive for computing the HD between two digital images. Moreover, since 28

the computation of the dilation can be optimized on GPUs [20] our algorithm can be extremely efficient computationally. In 29

fact, all other algorithms compute the HD as the greatest distance from one point to a set of points [1], which is much more 30

computationally expensive [13]. 31

3.3. A new measure for comparing ROI 32

Section 3.2 presented a new algorithm to calculate HD. However, as the results of the next section show, this and all 33

the measures in Section 2 have drawbacks, when used to compare segmented images for ROI evaluation. These drawbacks 34

highlight the need for a new measure to pair with the physician’s expectation when examining an organ and at same time 35

the CADs requisites. In order to illustrate, these we use a group of synthetic images. 36

In the following, suppose that the D∆ is a square made from the Cartesian product of the interval [−0.2, 1.2] by itself 37

with resolution 0.1 (i.e. {−0.2, −0.1, . . . , 1.1, 1.2} × {−0.2, −0.1, . . . , 1.1, 1.2}). Sets A∆ and B∆ are made by taking the 38

union of small squares of 0.1 × 0.1 as shown in the drawings on Fig. 6. For instance, for the Case 1 in Fig. 6 they are: 39

A∆ = {(x1, x2) : x1, x2; ∈ {0.0, 0.1, 0.2, . . . , 0.8, 0.9, 1.0}}; 40

B∆ = {(x1, x2) : x1, x2; ∈ {0.1, 0.2, 0.3, . . . , 0.9, 1.0, 1.1}}. 41

PR frequently deals with shape estimation. In this case, the ROIs are correctly defined for the Cases 1, 2 or 3 in Fig. 6. In 42

cases where area or length must be evaluated, variation between Case 1 and 3 must be considered. However, in medical 43

analysis, it is expected that the selected set has a proper definition of the inside area; because in this set there is an 44

expectation for information to be extracted by using the proper image analysis techniques associated with the set. 45

The inclusion of relevant aspects of the tissues or organs in analysis is muchmore important than small details related to 46

irregularity of the borders. In biomedical considerations, border is more related to the coarser level, multi-scale and multi- 47

resolution representation of the image. In CADs segmentation, irregularity can be related to the resolution or scale of the 48

images under consideration, and they are not so important [8]. In medical analysis, Case 4 presents better segmentation 49

than Case 3 and Case 1. Case 5 and 6 are better than Case 4. Case 7 is better than Case 8, and both are better than Cases 4, 5 50

and 6. All the area of an organ must be included. Occurrence of FN and FP must be minimal. Moreover, the existence of FP 51

in some cases can be better than the presence of FN. 52
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BΔ

AΔ

DΔ

TN

FN

FP

TP

Fig. 6. Possible ROI definition by a givenmethod (red lines) and its relation with the correct ROI (green lines). The white area represents the TP region. The

∧
gray area represents the TN region. The yellow area represents the FN region. The blue area represents the FP region. (For interpretation of the references
to

∧
color in this figure legend, the reader is referred to the web version of this article.)

The use of overlapping measures implies on the employment in the evaluation of the measures in Eqs. (1) to (5). The1

use of several values makes the evaluation very complex. The measure being a single value makes it easily verified during2

examination, but it must match properly all the expectations. Moreover, the notion of zero values being the best possible3

and that larger results correspond to themost different measures is intuitively satisfying. We consider proper combinations4

of overlap measures in order to have adequate conditions that only one number is able to condense all of this information5

consistently. After all possible experimentation, using such measures, we propose a combination from (1), (4) and (5), and6

we state that we can have confidence measure of the region for use in medical evaluation of segmentation results in PR7

with:8

ROI-Index = 100 ∗ (1 − ACC ∗ PDN ∗ PDP). (12)9

This index was developed on the basis of what it is expected to be in a ROI for medical purpose. For tumor detection,10

the accuracy and the predictive measures (Eqs. (1), (4), (5)) of the results are much more relevant than the sensitivity and11

specificity (Eqs. (2), (3)). These two are presented in the EFI and Y -index, and, they do not differentiate properly among ROI12

segmentations. Eq. (11) shows better relationship to human expectation, where a smaller value presents a better result.13

To make the index more related to the usual perception of distance (i.e. least values present closer results) it is subtracted14

from 1, and in order to be represented in percentage, it is amplified 100 times (making the changes more perceptible). The15

ROI-index in Eq. (12) is able to provide more reliable comparisons between digital images, even better than the standard16

HD, as shown in the next section.17

4. Outcomes18

Fig. 6 shows synthetic sets. Cases a to f are variations of Case 2, where the areas have a common HD but with different19

values for CAD systems. The boundaries of sets A∆ and B∆ in these change ±0.01 as represented from Case a to Case f, and20
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Table 1
Results for Case 2 and a to f of Fig. 6.

Measure Case 2 Case a Case b Case c Case d Case e Case f

Area of TP 1 1 0.99 0.99 1 0.99 1
Area of TN 1 0.43 0.44 0.44 0.43 0.42 0.44
Area of FN 0 0 0.01 0.01 0.01 0.01 0
Area of FP 0 0.01 0 0 0 0.01 0
ACC 1 0.993 0.993 0.993 0.993 0.986 1
SEN 1 1 0.990 0.990 0.990 0.990 1
ESP 1 0.977 1 1 1 0.977 1
EFI 1 0.989 0.995 0.995 0.995 0.983 1
PDP 1 0.990 1 1 1 0.990 1
PDN 1 1 0.978 0.978 0.977 0.977 1
Y-index 1 0.977 0.990 0.990 0.990 0.967 1
ROI-index 0 1.678 2.901 2.901 2.951 4.655 0

Table 2
Results for the images of the group 1 of Fig. 7. In opposition of the other results, those with smaller ROI-index and HD indicate that the segmentation looks
closer to its GT.

Measure IR_3830 IR_5986 IR_7464 IR_8228
Seg.Tech. LSF BSP LSF BSP LSF BSP LSF BSP

ACC 0.985 0.981 0.987 0.985 0.984 0.982 0.985 0.982
SEN 0.984 0.986 0.991 0.994 0.983 0.987 0.990 0.991
ESP 0.987 0.974 0.983 0.978 0.985 0.977 0.980 0.973
EFI 0.986 0.980 0.987 0.986 0.984 0.982 0.985 0.982
PDP 0.990 0.979 0.979 0.973 0.984 0.976 0.980 0.972
PDN 0.980 0.983 0.993 0.995 0.985 0.988 0.991 0.991
HD 10.630 11.310 9.900 11.310 12.730 15.560 11.310 14.140
Y-index 0.971 0.960 0.974 0.972 0.968 0.965 0.970 0.964
ROI-index 4.388 5.690 4.101 4.553 4.685 5.309 4.421 5.421

the area of D∆ is now considered to be: 1

D∆ = {(x1, x2) : x1, x2; ∈ {−0.1, 0.0, 0.1, . . . , 1.0, 1.1}}. 2

Table 1 shows the proposed ROI-index and allthe evaluator commented for case 2 and the cases a to f of Fig. 6. It isQ5 3

interesting to see that: (1) Case 2 and Case f present the same value for diagnosis; (2) Configurations of ‘‘Case a’’ to ‘‘Case e’’ 4

present different values for diagnosis; (3) Considering the relevance of TP, FP and FN in CADs, they are graded in the order 5

of Case f < Case a < Case c < Case b < Case d < Case e. ACC does not show any difference among the Cases a through 6

d. SEN groups the 6 cases into only two values. ESP considers Case c and Case d to be equal. EFI considers Case a, b and e to 7

be equal and also Case c = Case d. PDP exhibits only 2 values for all the 7 cases, while PDN exhibits only 3 values for all. 8

Y-index presents 4 values for the cases but, it did not distinguish Case b from Case e and Case c from Case d, moreover, the 9

grades are in an inadequate order. The proposed ROI-Index is better than all those discussed above. 10

To compare the results of the proposed index on real images, we consider the two approaches presented by Marques 11

and Conci [12] for automatic segmentation and its results against the GTs. The approaches developed are based on the 12

use of the least squares fitting (LSF) or B-Spline (BSP) for definition of the breast boundaries. The HD, ROI-Index and 13

all the overlapping measures for these are presented in Tables 2 to 4. All images can be viewed or downloaded at 14

http://visual.ic.uff.br/en/proeng. The labels of these images correspond to the numbers of the database used, which are 15

registered under the number CAAE 01042812.0.0000.5243 [22]. The IR image considered is identified by its number. 16

Segmentations and GTs can be found at: http://visual.ic.uff.br/en/proeng/marques/. 17

All algorithms used have been implemented in C++ programming language usingOpenCV libraries version 2.3.1 andGSL 18

(GNU Scientific Library) version 1.8. For the evaluation of the ROIs, 3 GTs for each image were generated by using a Samsung 19

Galaxy P7510 tablet with stylus screen marker. These were grouped compounding a unique GT for each image [13]. The HD 20

and overlapping measures between each final GT and the ROI is computed in the same environment. 21

Figs. 7–9 show the images with each of the three ROI to allow better study of the HD and ROI-index. Let us consider 5 22

groups in these images: (1) the two segmentation techniques present good ROI, but one is better than the other; both (HD 23

and ROI index) show this properly; (2) both techniques present bad ROI, but one is even worse than the other, both HD and 24

ROI index show this; (3) the two techniques presents good ROI, but one is better than the other and only ROI-index shows 25

this; (4) both techniques present bad ROIs, but one is even worse than the other, and only the ROI-index shows this; and 26

(5) only one technique presents good ROI, and both HD and ROI-index show this. 27

In group 1, there are 4 images (IR_3830, IR_5986, IR_7464, and IR_8228). In these images, the LSF visual boundaries of 28

the breast (represented by the red line) are (on average) the closest of the GT borders (green line). The results for each 29

segmentation in this group shows, for both HD and the ROI-index lower values (Table 2). The same visual sensation is 30

matched also for the ACC, ESP, EFI, PDP and Y-index. 31

http://visual.ic.uff.br/en/proeng
http://visual.ic.uff.br/en/proeng/marques/
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Fig. 7. ROI segmented properly (groups 1) by two techniques. The overlay of edges from segmentation by LSF technique is in red lines, by BSP technique are
in blue and the GT is represented by green lines. Results of the computed measures for these are presented in Table 2. (For interpretation of the references
to

∧
color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Results for the images of group 2 (Fig. 8). Results with smaller ROI-index and HD indicate that the segmentation looks closer to its GT.

Image IR_1252 IR_3921 IR_4875 IR_7446
Seg.Tech. LSF BSP LSF BSP LSF BSP LSF BSP

ACC 0.968 0.967 0.971 0.966 0.959 0.935 0.967 0.959
SEN 0.950 0.952 0.996 0.995 0.997 0.996 0.999 0.999
ESP 0.984 0.982 0.947 0.937 0.915 0.863 0.928 0.910
EFI 0.967 0.967 0.971 0.966 0.956 0.930 0.964 0.954
PDP 0.982 0.979 0.949 0.940 0.931 0.894 0.945 0.932
PDN 0.955 0.957 0.995 0.995 0.996 0.995 0.999 0.999
HD 24.040 26.870 21.210 23.350 30.410 36.070 20.520 22.630
Y-index 0.934 0.933 0.942 0.932 0.912 0.859 0.927 0.909
ROI-index 9.189 9.388 8.243 9.665 11.036 16.821 8.651 10.722

Table 4
Results for the images of group 3, 4 and 5 (Fig. 9).

Measure IR_1283 IR_1367 IR_3113 IR_5870
Seg.Tech. LSF BSP LSF BSP LSF BSP LSF BSP

ACC 0.980 0.980 0.968 0.970 0.989 0.981 0.983 0.975
SEN 0.990 0.991 0.937 0.940 0.997 0.997 0.981 0.984
ESP 0.970 0.970 0.989 0.990 0.983 0.971 0.986 0.964
EFI 0.980 0.980 0.963 0.965 0.990 0.984 0.984 0.974
PDP 0.972 0.972 0.984 0.984 0.977 0.960 0.987 0.969
PDN 0.989 0.990 0.959 0.961 0.997 0.998 0.979 0.982
HD 16.970 17.690 21.000 22.670 11.310 15.560 7.070 18.440
Y-index 0.960 0.960 0.927 0.930 0.980 0.967 0.967 0.949
ROI-index 5.777 5.680 8.695 8.297 3.659 6.006 4.952 7.238

In group 2, there are four images (IR_1252, IR_3921, IR_4875, and IR_7446). In these, the visual boundaries of the1

technique LSF (represented by the red line) are the closest to the GT borders (green line). The results of segmentation in2

this group (Table 3) show for both HD, and the proposed index, lower values, although both are much higher than those of3

Table 2. The results of BSP are even higher, thus representing this properly. The same visual sensation is matched also for4

the ACC, ESP, PDP and Y-index.5

In group 3, there is an image (IR_1283) where the visual boundary using the technique B-Spline (BSP) for the definition of6

the breast boundaries (represented by the blue line) is the closest of the GT borders (line green). The results for segmentation7
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Fig. 8. Incorrect ROIs (group 2), where the segmentation border by LSF technique are in red lines, by BSP technique are in blue, and the GT is represented
by green lines. Results of for these are presented in Table 3. (For interpretation of the references to

∧
color in this figure legend, the reader is referred to the

web version of this article.)

Fig. 9. Segmentations for groups 3–5 by two techniques and its GTs. Edges for segmentation by LSF technique are in red; by BSP technique are in blue,
and the GT is represented by green lines. Results for these are presented in Table 4. (For interpretation of the references to

∧
color in this figure legend, the

reader is referred to the web version of this article.)

in this group show opposite results for HD (Table 4), but, the proposed index presents lower values, that is, the ROI-Index is 1

closer to what can be seen in the images. The same visual sensation is matched only for SEN and PDN. 2

In group 4, there is an image (IR_1367), in which the visual boundaries of the technique BSP, (represented by the blue 3

line), are visually closer to the GT borders (green line). The results for segmentations in this group (Table 4) show opposite 4

results only for HD. The proposed index and all others present the correct result, that is, BSP is closer to the GT of the 5

images. 6
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In group 5, there are two images (IR_3113 and IR_5870), in these the visual boundaries of the LSF technique (red line)1

are the closest of the GT borders (green line), the other is visually very different. This closeness (Table 4) is represented by2

HD (the proposed index and all others except PDN).3

It is possible to see that a simpler and more intuitive notion of correctness of the results is obtained for the new index.4

Thismeasure can be used in segmentation results in an intuitive and fastway.Moreover it ismore representative formedical5

diagnosis than the others. It is better in a number of cases when the visual results are confronted with the various degrees6

of adequacy of each approach.7

Comparing the results of
∧
Tables 2–4 and the ROIs in Figs. 7–9 it is possible to see that the proposed new index behaves8

better than the HD. As the HD provides a unique measure, its applications are simpler and more intuitive than the other9

evaluator. The ROI-Index makes it possible to consider that all results are good when they are lower than a threshold value10

(around 5.9). Moreover, this new index represents properly the segmentation results, and can be used as a measure in real11

time due to the very small computing time needed for its evaluation.12

5. Concluding remarks13

In this work, a new index for the evaluation of the correctness of the ROI segmentation is proposed, which represents the14

actual medical needs for diagnostics. The idea that the construction of the δ-parallel body of discrete sets can be seen as the15

morphological operation of dilation of the set by using a disk (as structuring element) is proposed. Moreover, a new approach16

for computing the HD is presented, which is based on the computation of the δ-parallel bodies of digital images.17
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